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Abstract. Deep learning as a valuable intelligence tool to deal with
complicated problems plays a crucial role in the 21st century. The utility
of deep learning in solving partial differential equations (PDEs) is an
interesting application of AI, which has been considered in recent years.
However, supervision of learning procedure needs to have considerable
labeled data to train the network, and this method could not be a ben-
eficial technique to deal with unknown PDEs which we do not have any
labeled data. To tackle this issue, in this paper a new method will be
presented to solve PDEs only by using boundary and initial condition.
Weakly supervision as an efficient method can provide an ideal bed to
tackle boundary and initial value problems. To have better judgment
about this method we chose Reaction-Diffusion equation as a versatile
equation in engineering and science to be solved as a case study. By
using the weakly supervised method and the finite difference method
reaction-diffusion equation have solved, and the results of these methods
have been compared. It has been shown that the results of deep learning
have high consistency with finite difference results, and weakly super-
vised learning can be introduced as an efficient method to solve different
types of differential equations.
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1 Introduction

Machine learning can be mentioned as one of the most influential elements in the
contemporary century [2]. This powerful tool plays a crucial role in large num-
ber of engineering purposes. For instance, smile recognition in cameras, intelli-
gent assistants in mobile phones, and attack detection in the network were no
longer possible, since machine learning made them possible [1,15,24]. Supervised
learning as a subset of machine learning, needs a labeled database for learning
procedure [10]. Although, providing a proper database considerably improve the
performance of the learning process, but this database is not always available. To
deal with this problem, weakly supervised learning has been introduced [14,18].
Typically, there are three types of weak supervision which are, incomplete super-
vision, inaccurate supervision and inexact supervision [30]. All of these methods
are designed to make the learning process possible without the large labeled
database. This feature of weakly supervised learning techniques makes it a com-
fortable bed for defining physical problems which we do not have sufficient data
about. Among all of the techniques that we use for studying physical problems,
one of the important ones is solving the partial differential equations.

Partial differential equations (PDEs) are one of the cornerstones in mathe-
matical modelling. Most of the physical description of natural phenomena are
being simulated by taking advantage of PDEs [13]. For example, fluid motion
(Navier-Stokes equation), electromagnetic field (Gauss’s law) and electrodynam-
ics (Schrödinger equation) have been modelled using partial differential equations
[3,5,22]. Solving these equations based on analytical methods in most cases
is impossible, and numerical methods should be implemented to represent the
approximate solution. Common numerical methods like finite element method
(FEM) and finite volume method (FVM) have some inevitable problems, such as
mesh dependency and long computational time, which motivate scientists to find
an alternative to these methods. Considering recent advances in machine learn-
ing and specifically Deep learning, ML methods could be an efficient alternatives
for conventional numerical methods for solving PDEs in near future [23].

One-dimensional Reaction-Diffusion equation is known as one of the versatile
differential equations in science and engineering. This equation can be used for
modelling several phenomena, such as Turbulent flows, diffusion of ions in a
reactive medium and financial progress in competitive environment [9,12,26].
As a more sensible example, the case of sulfate attack to concrete is one of
the famous cases that reaction-diffusion equation can successfully simulate. In
this case, we are interested in finding the concentration of sulfate ions in a
known time and position, and since sulfate and concrete react with each other we
have to solve reaction-diffusion for finding the correct concentration distribution
[6,20,27].

In this paper, we focus on the one-dimensional reaction-diffusion with Dirich-
let boundary condition. We tend to encode the behavior of the equation into a
loss function, in a way that deep learning algorithm can learn and generate
correct solutions for any time frame without having any labeled data. For this
purpose, a convolutional kernel has been designed which encode the constraints
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that must be satisfied in each time step and position, and this kernel was used to
determine the loss function. By minimizing the loss function, the deep neural net-
work learns to satisfy the constraints during solving the equation and learn the
physics of the reaction-diffusion equation effectively. The reaction-diffusion equa-
tion with specified boundary conditions has been solved by weakly supervised
method, also the numerical solution of this equation based on finite difference
method (FDM) presented and the results of the deep learning algorithm have
compared with the FDM method.

2 Related Work

This work is an interdisciplinary study between artificial intelligence and dynam-
ical systems, and each one has been pursued by a large number of researchers.
The former subject is studying by data scientists and AI developers. The main
aim in weakly supervised learning is providing a general platform technique
which learning algorithms will be able to learn with limited initial labeled data
for training stage. The latter subject is searching to find an accurate method
for solving partial differential equations. The utility of different numerical tech-
niques for the approximation of the solution of PDEs is one of the important
part of these researches.

Exchanging conventional numerical methods with alternative meshless tech-
niques like machine learning in recent become increasingly popular. Especially in
case of problems with the complex mathematical formulation machine learning
schemes are replacing with classical models. Oquab et al. have used weakly super-
vised convolutional neural network for object classification in image processing
to reduce the number of labeled input images [18]. This technique was a general
concept, and has used in different applications, such as automatic classification,
medical image analysis and solving differential equations [4,11,25]. Sharma et
al. trained an encoder-decoder U-Net architecture, which was a fully convolu-
tional neural network to solve the steady-state two-dimensional heat equation
on a regular square. For this purpose, they used weakly supervised learning tech-
niques in defining a proper convolutional kernel and loss function to train the
network only by using the boundary conditions of the PDE rather than provid-
ing a large number of labeled data-sets [21]. Han et al. have introduced a new
method for solving high-dimensional PDEs with the utilities of deep learning.
They reformulate the PDEs in the form of backward stochastic differential equa-
tions (BSDEs) and then by using deep learning approximate the gradient of the
solution. Although their method is accurate for dealing with high-dimensional
cases, complexities of this method justify the searching for the comprehensive
approach to tackle linear and low-dimensional PDEs [8,28].

On the other hand, conventional numerical methods such as FDM and FVM,
have been widely developed to tackle different types of mathematical problems
which representation of analytical solution for them is not available [17]. For
instance, for the above example of the application of the reaction-diffusion equa-
tion in sulfate attack, Guo et al. have used the finite difference method to find
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the concentration distribution of sulfate ions in concrete [31]. Also, extended
researches have conducted on the application of machine learning in differ-
ent engineering fields, such as tackling with turbulent flows and control theory
[7,16,29].

3 Physics

3.1 Reaction-Diffusion Equation

For solving 1-D reaction-diffusion equation, a simple line has been considered as
domain with Dirichlet boundary condition at the ends of the line. By assigning
the arbitrary constant to the diffusion coefficient, we can control the role of the
material on the transport phenomena. Also, the reaction coefficient specified the
effect of interaction between the diffusive substance and medium. In this simu-
lation, a high concentration applied to the boundaries, and the aim is modelling
the propagation of that substance among the domain. The boundary conditions
are given by C(0, t) = C(L, t) = C0, and we want to determine C(x, t), the
concentration field in arbitrary time.

The general form of the reaction-diffusion equation in one-dimensional space
is shown in Eq. 1:

∂C

∂t
= D

∂2C

∂x2
− RC (1)

Where D,R > 0 are the diffusion coefficient and reaction rate between specified
material and domain respectively.

The analytical techniques for solving the reaction-diffusion equation are not
as simple as pure diffusion. For this reason, we utilize numerical methods to
obtain an accurate solution.

3.2 Finite Difference Method

The finite difference is a simple numerical method which is used to compute the
accurate solution of the partial differential equations in regular domains. In this
method governing equation and the domain both discretized, and the equations
solved iteratively on the discrete domain. Considering the discretization of the
domain 3 and time 4, the discretized form of reaction-diffusion equation for
position m and time n would be:

Cn+1
m − Cn

m

Δt
= D

Cn
m−1 − 2Cn

m + Cn
m+1

Δx2
− RCn

m (2)

xL − x0

m
= Δx (3)

t∞ − t0
n

= Δt (4)

Where Cn
m is the concentration in time n and position m, also indices 0, L and

∞ represent the initial step in time and position, end of the domain and last
time step respectively.
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With solving the Eq. 2 iteratively, the value of the C in each time and position
converge to the real value.

4 Deep Learning Solver

The aim of this work is using the deep neural network to solve the reaction-
diffusion equation with only using boundary and initial conditions, without
knowing the numerical or analytical solution or even having any labeled data. For
this purpose, the differential equation has been decoded into a physical-informed
loss function. This technique helps us to find the solution of the PDE without
using supervision in the form of data.

To import the initial and boundary conditions of the problem into the deep
neural network, we used a n × m matrix which its columns and rows represent
the positions and time steps respectively. All of the matrix elements for the input
matrix are zero except the first and last columns which their values represent
the boundary condition values (which in this study is C0). Also, in this matrix
each row demonstrates the concentration distribution in a specified time-frame.

4.1 Deep Learning Architecture

A fully convolutional encoder-decoder network in the form of U-Net architecture
has been utilized in this study as Ronneberger et al. have used this architecture
for biomedical image segmentation [19]. The main reason for choosing a fully
convolutional architecture among other architectures is the flexibility of this
structure to solve problems at multiple scales. The network contains several
encoding convolutional and decoding pooling layers which save the input matrix
size during the learning process. Finally, the output matrix represents the solu-
tion of the PDE in the discretized space-time domain. The schematic structure
of the network is shown in Fig. 1:

As it is shown in Fig. 1, each encoding layer has been connected to the cor-
responding decoder layer using Fusion connection. The reason for the utility of
fusion connections is to pass the boundary values of the input to the output lay-
ers, and by this technique, the network is not forced to memorize the structure
of the input in its bottleneck layers. The number of layers in our architecture
is arbitrary, and it is simply possible to add layers into the network as much as
necessary.

4.2 Kernel

To make an intelligent network that can solve the equation in any time and
position, it is necessary to define the governing rule in that equation in a simple
way for the neural network. It is similar to the method that FDM use for solving
the discretized equation. In fact, by discretization of a continues equation and
transferring that equation into the algebraic form we can observe the governing
rule for every point in space and time.
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Fig. 1. Deep neural network diagram

By reforming the Eq. 2, we can find the state of an arbitrary point in the
space-time domain based on its neighbours as shown in Eq. 5:

Cn+1
m = Cn

m + B
(
Cn

m−1 − 2Cn
m + Cn

m+1

) − RCn
mΔt (5)

And B defined as follow:
B =

DΔt

Δx2
(6)

For transferring the relation among variables into the neural network, Eq. 5 have
been decoded into the 3 × 3 convolutional kernel as follow:

⎛

⎝
−a −b −c
0 1 0
0 0 0

⎞

⎠ (7)

Where:
a → B c → B b → (1 − 2B − RΔt) (8)

Discussed Kernel has been convolved into the across the input matrix, and the
output matrix after normalization was used to calculate the Loss function:

∑

i,j

(Conv2D(Kernel,Output)i,j)
2 (9)

By minimizing the Eq. 9, the deep neural network tries to make its’ solution
closer to the real values which can be found in Eq. 5 and changing in boundary
and initial conditions train the network for solving any type of problems governed
by reaction-diffusion physics.
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5 Results

In this section, we will discuss the results of the deep learning solution, and
compare the answers to finite difference results. In the presented study to have
more realistic results, boundary conditions and all coefficients were chosen from
the work of Zuo et al. on the sulfate attack to concrete [31]. As it was raised
in the deep learning section, the output of the U-Net network for specific input
is a matrix which its columns and rows represent the position and time, and
the value of each element demonstrates the concentration in ith time and jth
position. In Fig. 2, a sample output matrix of the deep learning solver with
constant boundary condition in both sides of the domain is shown:

Fig. 2. Sample output matrix from neural network

Looking at Fig. 2 in more detail, the progress of concentration diffusion along
the time axis is obviously visible. The value of all elements on the first and last
column are same and equal to the boundary value. Also, it is clear that by
passing the time, the gradient along time and position decrease, and the answer
converge to the steady-state solution.

Figure 3 compares the deep learning solution with finite difference method
results in terms of concentration distribution along domain in different times.
With looking more precisely to Fig. 3, we observe that deep learning results have
high consistency with FDM results. The only part that deep learning could not
predict correctly was in the first and last part of the 1 s timeline. The reason
for this disability of deep learning in these regions is the high gradient in these
areas.
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Fig. 3. 2D comparison of deep learning with FDM

In Fig. 4, solutions of the reaction-diffusion equation in three different sets of
coefficients have been shown based on deep learning and numerical method. We
have set the proportion of reaction and diffusion coefficients in a way that by
solving the equation with these coefficients observe the physic of pure diffusion,
pure reaction and reaction-diffusion.

For this purpose, a dimensionless coefficient has been defined which help us
to calculate the correct proportion of reaction and diffusion coefficients to have
all three state of the solution in our computation.

Damköhler number is an important dimensionless parameter in chemical
engineering which clarifies the role of diffusion, reaction or simultaneous reaction-
diffusion phenomena in transport phenomena and define as follow:

Da =
Rate of reaction

Diffusion rate
(10)

In our model Eq. 1, Damköhler number is defined as:

Da =
RL2

D
(11)

This number represents the states of reaction-diffusion in different states where
Da

∼= 1, Da � 1, and Da � 1 mean the physics of Reaction-Diffusion, pure
Reaction, and pure Diffusion respectively.

To have a quantitative assessment of deep learning solution, we assumed one
of the coefficients constant, and by changing the other coefficient MSE value has
been computed, and the result of this analysis is reported in Table 1:

behzad.zakeri@ut.ac.ir



Deep Learning Solution of 1-D Reaction-Diffusion Eq. 375

(a) Deep Learning, Da = 1 (b) FDM, Da = 1

(c) Deep Learning, Da = 104
(d) FDM, Da = 104

(e) Deep Learning, Da = 10−4 (f) FDM, Da = 10−4

Fig. 4. 3D comparison of deep learning with FDM

Table 1. Accuracy analyze based on changing coefficients

(a) D = 2.7 × 10−9

R coefficient MSE value
2.25 × 10−2 0.587
2.25 × 10−5 0.495
2.25 × 10−7 0.623
2.25 × 10−10 0.341

(b) R = 2.25 × 10−7

D coefficient MSE value
2.7 × 10−2 0.305
2.7 × 10−7 0.576
2.7 × 10−8 0.588
2.7 × 10−10 0.534

behzad.zakeri@ut.ac.ir



376 B. Zakeri et al.

The Mean Square Error index has been utilized to calculate the deep learning
error. We can see that the accuracy of deep learning results is dependent on the
coefficients of the equation; however, this dependency does not influence the final
results quality.

6 Conclusion

In this paper, the ability of weakly supervised learning in solving the transient
one-dimensional partial differential equation has shown. We saw that the results
of deep learning method perfectly were similar to the FDM results. Also, we
have observed that the value of the equation’s coefficients can influence the deep
learning accuracy. Although in this study, this effect did not distract our solution,
it could manipulate the results in critical cases such as stochastic differential
equations.

This technique is a functional method to approach problems that we do not
have sufficient labeled data about, and authors believe that by decoding the
physics of the problems into the kernel and using a proper network architecture,
a wide spectrum of problems can be solvable.
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